

Modified polymer dynamics in PDMS nanocomposites: Dielectric and Thermal studies

Panagiotis Klonos^a, Konstantinos Kyriakos^a, Ioannis Vangelidis^a, Iryna Sulim^b, M.V. Borysenko^b, Vladimir M. Gun'ko^b, Apostolos Kyritsis^a, Polycarpos Pissis^a

^a Department of Physics – National Technical University of Athens, Zografou Campus, 15780, Athens, Greece ^b Institute of Surface Chemistry, National Academy of Sciences, Kiev, Ukraine

Introduction

Molecular dynamics, phase transitions and interfacial relaxation phenomena in various poly(dimethylsiloxane) (PDMS) – silica (SiO_2) nanocomposites were studied using the following experimental techniques: Differential Scanning Calorimetry (DSC), Thermally Stimulated Depolarization Currents (TSDC) and Dielectric Relaxation Spectroscopy (DRS) in the temperature range from -170 to 60 °C. Measurements were carried out for different crystallization treatments (linear cooling, crystallization annealing). The samples were based in polymers sorbed onto silica nanooxides forming the called '*core-shell nanoparticles*'. The present work aim to detect the effects of the polymer-filler interactions on the physical properties, in general, for different types of nanosilica and their surface modifications.

Materials

Samples were consisted of linear PDMS chemically sorbed mainly onto the surfaces and pores of three types of silicon dioxide: fumed silicas (A380 /13-32 nm / 342 m²/g and OX50 / 4-5 nm / 58 m²/g) and mesoporous silica gel (Si60, 0.3-0.5 mm, 384 m²/g) [1], forming the called 'core-shell' nanoparticles'. The inorganic phase was also modified by the addition of small zirconia nanoparticles (ZrO₂, 3-8 nm) [1]. Polymer/filler content varied between 100/0 (wt%) to 40/60 (wt%).

Differential Scanning Calorimetry - DSC

Fig.1 DSC measurements for PDMS and its nanocomposites for standard crystallization treatment (linear cooling): PDMS/A380 (up left), PDMS/OX50 (up center) and PDMS/Si60 (up right). The insets show, in detail, the glass transition region. Changes on the glass transition for PDMS/A380 after crystallization annealing are shown in the down-left DSC thermogram.

Thermally Stimulated Depolarization Currents (TSDC)

Fig.2 TSDC thermograms for neat linear PDMS (left) and PDMS sorbed on 20wt% Si60 nanocomposite (right). Results are shown for standard and annealed crystallization of the polymer. The inset presents details in the segmental dynamics temperature region.

Results and discussion

The strong polymer-filler interactions were found to affect significantly the mobility of PDMS, suppressing crystallization and changing the development of glass transition [2]. The Interactions between polymer and filler were found weaker for PDMS-zirconia-silica than for PDMS-silica.

Dielectric measurements (TSDC, DRS) showed four contributions to the segmental dynamics associated with the glass transition arising, in the order of decreasing mobility, from the **confined polymer chains in the pores of silica gel** (a_{ρ} relaxation) [3], from the **bulk (unaffected) polymer** fraction (a), from polymer chains restricted between condensed PDMS crystals (a_{ρ}) and from the **polymer in an interfacial layer with strongly reduced mobility due to interactions on the nanoparticle surface (a') [2, 4].**

Information about the polymer-filler topology was gained from the dielectric [5] and thermal techniques and the respective literature [2, 3], confirming and supplementing chemical characterization results [1].

REFERENCES

- [1] Sulim I, Borysenko MV, Korduban OM, Gun'ko VM, Appl Surf Sci (2009) 255, 7818.
- [2] Klonos P, Panagopoulou A, Bokobza L, Kyritsis A, Peoglos V, Pissis P. *Polymer* (2010) 51, 5490.
- [3] Schonhals A, Goering H, Schick Ch, Frick B, Zorn R, Eur Phys J (2003) E12, 173.

European Union European Social Fund Co- financed by Greece and the European Union

tel. +30 210 772 2974 web: http://dielectricsgroup.physics.ntua.gr/